
Table of Contents
Mapfile structure
Comments
Any text after a # is a comment. Use comments a lot to document your mapfile.

Objects or Groups
A mapfile is composed of several objects. Each object start by the keyword object and finishes by END.
Inside an object there can be several objects with the object starting by its keyword and finishing by END.
A mapfile starts by the keyword MAP and finishes by END

 MAP
 ... some lines...
 END # end of map

Inside the mapfile there are objects like layers, each layer start by the keyword LAYER and finishes by
END

 MAP
 ...
 LAYER
 ...
 END # end of layer

 LAYER
 ...
 END # end of layer
 END # end of map

Do not try to figure how many END you need to put in the mapfile but use indentation to clearly identify
each object with its keyword, text and END keyword. All objects are nested and with proper indentation,
they are clearly visible. Indentation is not required but facilitates understanding a mapfile. Adequate
comments help a lot too.

A word on colors
The keyword COLOR, OUTLINECOLOR,.. specify the color in the RGB color space. The first value is the
red intensity from 0 (no red) to 255, the second value is the green intensity from 0 (no green) to 255 and
the last value is the blue intensity from 0 (no blue) to 255. A COLOR 0 0 0 indicates black while COLOR
255 255 255 indicates white. COLOR 0 255 0 would be pure green. The 3 values are compulsory and must
be numbers. To select some correct values, use a color selector like the one inside MS-Paint in
accessories. You select the color and the RGB values are indicated.

Mapfile header
The mapfile header is composed of several objects for the representation of the maps on the screen, you
have the map itself, the web object to define how the web image is created, the reference or overview, the
scalebar, the legend and if the map should be queryable. It is better to use pre-canned header and modify
little parameters to conform to a specific map.
This is the standard header for a map object

#
Start of map file
#
MAP
NAME "Efate"
STATUS ON
SIZE 400 400

EXTENT 196900 8027100 245000 8073000
UNITS METERS
TRANSPARENT OFF
SHAPEPATH "/var/www/html/map/"
IMAGETYPE png24
FONTSET "fonts/fontset.txt"

OUTPUTFORMAT
 NAME png24
 DRIVER "GD/PNG"
 MIMETYPE "image/png"
 IMAGEMODE RGB
 EXTENSION "png"
END

#
Start of web interface definition
#
WEB
 TEMPLATE /var/www/html/map/map.html
 IMAGEPATH /var/www/html/map/images/
 IMAGEURL /map/images/
 LOG /var/www/html/map/maplog
END

#
Start of reference map
#
REFERENCE
 IMAGE /var/www/html/map/data/efate.png
 EXTENT 196900 8027100 245000 8073000
 STATUS ON
 COLOR -1 -1 -1
 OUTLINECOLOR 255 0 0
 SIZE 95 95
END

#
Start of legend
#
LEGEND
 KEYSIZE 18 12
 LABEL
 TYPE BITMAP
 SIZE MEDIUM
 COLOR 0 0 89
 END
 STATUS ON
END

#
Start of scalebar
#
SCALEBAR
 IMAGECOLOR 255 255 255
 LABEL
 COLOR 0 0 0
 SIZE SMALL
 END
 SIZE 350 5
 COLOR 255 255 255

 BACKGROUNDCOLOR 0 0 0
 OUTLINECOLOR 0 0 0
 UNITS kilometers
 INTERVALS 5
 STATUS ON
END

#
Start of query definitions
#
QUERYMAP
 STATUS ON
 STYLE HILITE
END

Tip: A quick way to start a mapfile is to take the above and just add a END at the end of it. Point
to a real image in the REFERENCE section and change all the paths to reflect your own
installation. You will have then a working mapfile with no layers. You can then add a GRID to it
and start to make modification to suit what you really want to achieve.
It is important here to have the following paths set correctly in regards to where you installed the
mapfiles:

SHAPEPATH
IMAGEPATH
IMAGEURL
IMAGE

See their definition later in the text

Map object

MAP
NAME "Efate"
#name of the map file
STATUS ON
is this map on by default
SIZE 400 400
size in pixel of the image map
EXTENT 196900 8027100 245000 8073000
geographic extents of the map
UNITS METERS
units for the geographic extents
TRANSPARENT OFF
the background is not transparent
SHAPEPATH "/var/www/html/map/"
where the shapefiles are stored on the
server also used for directory reference
IMAGETYPE png24
type of image output, here PNG format in 24bits color
FONTSET "fonts/fontset.txt"
file containing the locations of fonts

Web
This group defines where to store information on the server and how to provide it to the web browser

WEB
 TEMPLATE /var/www/html/map/map.html
location of the template for results

the line needs to be here, but it is
not used (no file at this location)
 IMAGEPATH /var/www/html/map/images/
location where to store maps images
 IMAGEURL /map/images/
web path for the maps images
 LOG /var/www/html/map/maplog
location of the logfile
END

Metadata
VIEW
View allows you to create views so you can quckly move to the geographic location, for instance moving
from one country to another one.

WEB
METADATA
VIEW1 "American Samoa,181.496593149,-20.0990853659,199.331777248,-8.22408536586"
VIEW2 "Australia,97.5030380511,-48.984521576,168.843774449,-1.48452157598"
VIEW3 "Cook Islands,180.098325105,-27.4401969982,215.768693304,-3.69019699813"
...
END
...
END

Each view needs to be numbered in sequential order. Each field is separated by commas, the first field is
the name of the view, the following fields are minx,miny,maxx,maxy of the view.

Cf. Maps MapView for a detailed description.

Reference
This group defines how the overview should be displayed. You use an image representing the area of
interest and you specify the coordinates of the location of the edge of the image. The system will draw on
the image a rectangle based on the current view, indicatin the boundaries of such view.

REFERENCE
 IMAGE /var/www/html/map/data/efate.png
location of the image
 EXTENT 196900 8027100 245000 8073000
extent of the image
 STATUS ON
the overview is on by default
 COLOR -1 -1 -1
transparent background
 OUTLINECOLOR 255 0 0
the color of the outline
 SIZE 95 95
the size of the image in pixels
END

The tip to create an image for overview, is to not worry about the image at the begining. Any image will
do. When the layers are implemented in the mapfile and the main view sounds pretty enough, then select
a default view, click Redraw if neccessary to get the minx, maxx, miny, maxy parameters in the URL, (if
necessary adjust them manualy). Save the current map as an image onto your local machine, use an image
editing software to resize the image to the size you want to use in the overview (here 95x95 pixel). Upload
the image using the maps->layer manager and update the IMAGE link in the REFERENCE group to point

https://doc.tiki.org/Maps-MapView

to this new image. Finish by entering the correct EXTENTS that corresponds to the minx,miny,maxx,maxy
of the map you used to create the overview.

Legend
The legend is linked to each LAYER by the way each object type is represented (POINT, LINE,
POLYGON,...) and its COLOR and OUTLINECOLOR and by the NAME used in the CLASS group. It is
important to have a meaningful NAME for each CLASS group in every LAYER group. The NAME of the
CLASS can be different from the NAME of the layer as a LAYER can have several CLASSes.

LEGEND
 KEYSIZE 18 12
the size of the object representing the
geographical object
 LABEL
 TYPE BITMAP
Font type for the legend name of each
geographical object
 SIZE MEDIUM
font size
 COLOR 0 0 89
font color
 END
 STATUS ON
legend is on by default
END

Scalebar
It is interesting to display a scalebar to get information on distances.

SCALEBAR
 IMAGECOLOR 255 255 255
background color of the image placeholder

 LABEL
 COLOR 0 0 0
color of the labels indicating the distance
 SIZE SMALL
size of the labels
 END
 SIZE 350 5
sixe in pixels of the scalebar
 COLOR 255 255 255
color used in the scalebar
 BACKGROUNDCOLOR 0 0 0
background color of the drawn scalebar
 OUTLINECOLOR 0 0 0
outline color of the salebar
 UNITS kilometers
units to be used
 INTERVALS 5
How many intervals in total in the
scalebar
 STATUS ON
the scalebar is on by default
END

Query
This group secify that the map will be queryable and how the selected objects should be represented.
Include this group even if you don't have a LAYER that can be queryable. It will certainly come later.

QUERYMAP
 STATUS ON
the map is queryable by default
 STYLE HILITE
the selected object is highligthed
END

Layers
Vector layer
Let's start by a very simple layer that we will add more features to it. A layer start by the keyword LAYER
and finishes by END. It can include CLASS groups, METATADATA groups. For a vector layer the CLASS is
compulsory.

Layer Type
The two main types of GIS vector are ESRI shapefiles of Mapinfo TAB files. ESRI shapefiles are natively
supported while the Mapinfo filesare supported via the OGR library.
All locations of files must be indicated in relative reference to the path indicated by the keyword
SHAPEPATH in the MAP group.
If you have a file in "/var/www/html/map/data/mylayer.shp and SHAPEPATH indicates
"/var/www/html/map/" then your file location must be "data/mylayer.shp". Using this convention allows
you to easily locate files when you upload them using Maps->Layer Management.
File names are case sensitives and spaces in file names must be absoutely avoided. The extensions used
for files in layer must stay with the same case sensitivity. A shapefile is usually made of a shp, idx, dbf files
while a Mapinfo layer is made of TAB, ID, MAP, DAT (and sometimes IND) files.

Shapefile

LAYER
 NAME "My Layer"
 TYPE LINE
 STATUS ON
 DATA "data/myshapefile.shp"
 CLASS
 COLOR 255 0 0
 NAME "My layer legend"
 END # end of class
END # end of layer

In this example we see that the file is located in "data/", it is made of LINE objects that will be displayed
with the COLOR red. The layer should be drawn on the map by default (STATUS ON), and it will be
indicate as "My Layer" in the layer manager on the map, while being indicated as "My layer legend" in the
LEGEND.

Mapinfo TAB
The difference with a shapefile is the use of the OGR library to read the Mapinfo files. The keyword
CONNECTIONTYPE OGR must be used and the location of the file is given by the keyword CONNECTION
instead of DATA. All the rest stay the same.

LAYER
 NAME "My Layer"

 TYPE LINE
 STATUS ON
 CONNECTIONTYPE OGR
 CONNECTION "data/mymapinfofile.TAB"
 CLASS
 COLOR 255 0 0
 NAME "My layer legend"
 END # end of class
END # end of layer

Query
To make the layer queryable add anywehere inside the LAYER object the following lines:

TEMPLATE "query.html"
TOLERANCE 3
TOLERANCEUNITS PIXELS

The first parameters is necessary but does not need to pint to a real file. It is only used outsied tikimaps.
The second parameters specify the pointing TOLERANCE in TOLERANCEUNITS, here 3 pixels. If you
click on the map all the objects from this layer which are at less than 3 pixels from the click on the image
will be selected.
The map is then redraw and at the bottom of the page will be the information related from the object.
Note: if you create a GIS layer which fields contain HTML tags, like for IMG or A (anchor/link), they will
be rendered accordingly. This allows you to create a layer pointing to images stored on Tiki.

Labels
You can use querying to know which fields a GIS layer contains. From these fields you can select on to be
used a object labels in the map. For instance you have a GIS layer which contains country names. The
name of the country is in the field "NAME". You will use LABELITEM "NAME" to tell the mapserver which
field to use for labels.
Inside the CLASS object, you would specify how you want the labels to be rendered. For instance in our
example the layer would look like this:

LAYER
 NAME "Country Names"
 TYPE POINT
 STATUS ON
 METADATA
 DOWNLOAD "T"
 END
 LABELITEM "NAME"
 LABELCACHE ON
 CONNECTIONTYPE OGR
 CONNECTION "data/Country.TAB"
 CLASS
 SYMBOL 0
 COLOR 0 0 0
 NAME "Country Names"
 LABEL
 COLOR 0 0 0
 FONT arial
 TYPE TRUETYPE
 POSITION CC
 PARTIALS TRUE
 SIZE 7
 BUFFER 1
 OUTLINECOLOR 255 255 255

 END
 END
END

In this example LABEL is black (COLOR 0 0 0) using the arial FONT which is a TRUETYPE font. The
POSITION of the label is Center/Center in regard to the POINT object. If an object is not fully on the map,
the LABEL is still drawn (PARTIAL TRUE). The SIZE of the label is 7 points. There are no labels closer
than 1 pixels from each others (BUFFER 1). For this last parameter to work, you need to enable the
LABELCACHE. Finally the label is surrounded by a white outline (OUTLINECOLOR 255 255 255).

Thematic Mapping
Each layer contans one or more CLASS. The CLASS defines how each object should be drawn on the
screen. by using CLASSITEM, you can use one field to separate objects in classes. For instance all the
bathymetric lines which depth is between -100m and -500m belong to one class while each bathymetric
lines which depth is between -500m and -1000m belong to another class. The separation into CLASS is
made using an EXPRESSION in each CLASS. The EXPRESSION uses simple logic based on the field in
CLASSITEM.
For instance in the example below we use the field "value" which contain the water depth of the LINE
object to display this line object in various colors depending of the depth. If the EXPRESSION is true then
the parameters in the CLASS apply. A CLASS without an EXPRESSION is a default CLASS for all the
objects which have not been classified otherwise.

LAYER
 NAME "Bathymetry 20m"
 TYPE LINE
 STATUS OFF
 METADATA
 WIKI "FijiBathymetry"
 END
 TEMPLATE "query.html"
 TOLERANCE 3
 TOLERANCEUNITS PIXELS
 LABELITEM "Value"
 CLASSITEM "Value"
 LABELCACHE ON
 CONNECTIONTYPE OGR
 CONNECTION "data/fiji/viti_bathy_contour.TAB"
 CLASS
 SYMBOL 0
 COLOR 0 200 255
 NAME "Bathymetry 2.5m >-50m"
 expression ([Value]>-50)
 LABEL
 ANGLE AUTO
 COLOR 0 0 0
 FONT arial
 TYPE TRUETYPE
 POSITION cc
 PARTIALS FALSE
 BUFFER 5
 SIZE 6
 OUTLINECOLOR 200 200 200
 END
 END
 CLASS
 SYMBOL 0
 COLOR 0 100 255
 NAME "Bathymetry 20m >-500m"

 expression ([Value]<-50 AND [Value]>=-500)
 LABEL
 ANGLE AUTO
 FONT arial
 COLOR 0 0 0
 TYPE TRUETYPE
 POSITION cc
 PARTIALS FALSE
 BUFFER 5
 SIZE 6
 OUTLINECOLOR 200 200 200
 END
 END
END

Metadata
Inside a LAYER group you can have a METADATA group. Some of this metadata is used for special
purposes inside tikiwiki. There is only one METADATA group inside a LAYER group.

WIKI
Using WIKI creates a link from the layer name to a wiki page. Use the wiki page to indicate some
information on the layer:

custodian
ownership
date of creation
accuracy
history
datum/projection
interesting layer features
...

METADATA
 WIKI "MyLayerPage"
END

DOWNLOAD
If DOWNLOAD is set to "T" then the files that forms the layer can be downloaded by a registered user.

METADATA
 DOWNLOAD "T"
END

The system selects all the files with the same base name as defined in the LAYER DATA or CONNECTION
clause but with different extension. However if one of these files has the extension NDL, the download is
disabled. This allows to upload GIS data that can only be viewable.

Raster layer
The easiest way to handle raster layers is to use Geotiff images which contain projection information.
However making geotiff images may need advanced remote sensing software. The other way is to use an
additional file which contains information about the coordinates of the pixels in the image file.
When several images are used instead of using a layer for each image they can be tiled. A shapefile is
created with a rectangel for each image which helps the system to find the right image for the right
location.

Geotiff
Using a geotiff image in a layer is simple, the TYPE RASTER is used with DATA pointing to the tiff file. the
keyword OFFSITE is used to define which color in the tiff image should be used for transparency. This is
useful when tiling or overlapping several images.

LAYER
 NAME "DTM 50m"
 TYPE RASTER
 STATUS OFF
 DATA "data/fiji/VLevudtm.tif"
 OFFSITE 0 0 0
END

Image Tiles
Images tiles are created using utility tools from the mapserver software. The utility is called gdaltindex
and parses mainly geotiff images to get their boundaries and create a shapefile containing an outline for
each of the images. Under Maps->Layer Management, at the bottom of the page a utility is avalilable to
generate the shapefile. Basically upload the images to the right directory. The images should have the
same name prefix. Then reference all these images with a wildcaard and name the shapefile to be created.
For instance you can upload coralcoastsigatoka.tif, coralcoastmomi.tif, coralcoastnavua.tif and reference
them as coralcoast*.tif and create the shapefile img_index.shp

LAYER
 NAME "Coral Coast 4m IKONOS"
 TYPE RASTER
 METADATA
 WIKI "FijiImagery"
 END
 STATUS ON
 TILEINDEX "data/fiji/img_index.shp"
 TILEITEM "Location"
 OFFSITE 0 0 0
END

Grid Layer
A grid layer allows you to draw a grid in the local cordinates on your map. It is useful to find location of
objects on the map. For best effect the grid must be the last layer in the mapfile to be drawn the last.

LAYER
 NAME "Grid"
 TYPE LINE
 STATUS OFF
 CLASS
 COLOR 0 0 0
 LABEL
 FONT arial # must be in your FONTSET
 TYPE TRUETYPE
 SIZE 8
 COLOR 0 0 0
 OUTLINECOLOR 255 255 255
 END
 END
 GRID
 MINARCS 2
 MAXARCS 6

 END
END

	Mapﬁle structure
	Comments
	Objects or Groups
	A word on colors

	Mapﬁle header
	Map object
	Web
	Metadata

	Reference
	Legend
	Scalebar
	Query

	Layers
	Vector layer
	Layer Type
	Query
	Labels
	Thematic Mapping
	Metadata

	Raster layer
	Geotiﬀ
	Image Tiles

	Grid Layer

