MathJax

"MathJax is a cross-browser JavaScript library that displays mathematical equations in web browsers, using LaTeX math and MathML markup. MathJax is released as open-source software under the Apache license."
Source: http://en.wikipedia.org/wiki/MathJax

Tiki20+

Native support was added via https://sourceforge.net/p/tikiwiki/code/68624 and should appear here:
https://packages.tiki.org/

Before Tiki 20

Add the following line to tiki-admin.php -> Look and Feel -> Custom HTML <head> Content:

```
To include in all pages
<script type="text/javascript"
src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
```

```
To include only in one page (choose your own page name)
{if $page eq 'MathJax'}
<script type="text/javascript"
src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
{/if}
```

The other possibility (working in http and https) is to install (copy) the MathJax locally as described at: http://docs.mathjax.org/en/latest/installation.html
for example to "/add_mathjax" directory
and add to tiki-admin.php -> Look and Feel -> Custom HTML <head> Content:

```
For local instalation
<script type="text/javascript"
src="/add_mathjax/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
```

Then, just use math in your page using PluginHTML. It will sometimes work without that but there can be conflicts with wiki syntax or other code. Click here to see the source of the current wiki page for an example.

Nice presentation won’t load just after you save a page. So after saving, go to another page, and click back to your page

Below are math samples copied from http://www.mathjax.org/demos/tex-samples/. Right-click on the
The Lorenz Equations

\[
\begin{aligned}
\dot{x} & = \sigma(y-x) \\
\dot{y} & = \rho x - y - xz \\
\dot{z} & = -\beta z + xy
\end{aligned}
\]

The Cauchy-Schwarz Inequality

\[
\left(\sum_{k=1}^n a_k b_k \right)^2 \leq \left(\sum_{k=1}^n a_k^2 \right) \left(\sum_{k=1}^n b_k^2 \right)
\]

A Cross Product Formula

\[
\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\
\frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0
\end{vmatrix}
\]

The probability of getting \((k)\) heads when flipping \((n)\) coins is

\[
P(E) = {n \choose k} p^k (1-p)^{n-k}
\]

An Identity of Ramanujan

\[
\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}}{1+\frac{e^{-4\pi}}{1+\frac{e^{-6\pi}}{1+\frac{e^{-8\pi}}{1+\ldots} } } }
\]

A Rogers-Ramanujan Identity

\[
1 + \frac{q^2}{(1-q)}+rac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^\infty\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad \text{for } |q|<1
\]

Maxwell's Equations

\[
\begin{aligned}
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\
\nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
\nabla \cdot \vec{\mathbf{B}} & = 0
\end{aligned}
\]

Related links

- https://groups.google.com/forum/?fromgroups=#!topic/mathjax-users/-AP8s7AVpLo